Experimental analysis of dispersion relations of EMIC triggered emissions

B. Grison¹,

O. Santolík^{1,2}, N. Cornilleau-Wehrlin^{3,4}

- 1. IAP, ASCR, Prague, Czech Republic
- 2. Charles University, Prague , Czech Republic
- 3. LPP/CNRS, Palaiseau, France
- 4. LESIA/ Obs. de Meudon, France

Wave vector (k) measurements

- Motivation:
 - *k* is not directly accessible via instrumentation.
 - The wave vector is a key parameter to understand wave particle interaction processes.
 - The dispersion relation ω (k) is strongly dependent on the environment: without the full plasma composition parameters, it is not possible to properly estimate the wave vector in the inner magnetosphere (cf. *Silin et al.*, 2011)
- <u>k estimations without assumptions about the plasma</u> <u>environment:</u>
 - Multi-spacecraft analysis: k- filtering,...
 - Single-spacecraft analysis: Refractive index, Doppler shift.

k from single-spacecraft analysis: Refractive index (n)

- *n* can be estimated from δB and δE : *n* ($\kappa \times \delta E$)=*c* δB
 - Assumption: $\mathbf{k} \cdot \delta \mathbf{B} = 0$ to get the wave vector direction $\mathbf{\kappa}$
 - *n* =kc/ω
- For real measurements in space plasmas, **only** *n*/*Z* **is accessible**, where *Z* is the impedance of the electric antenna/plasma interface.
 - Problem: Z often depends on plasma parameters which may vary.
 - The phase and the amplitude are strongly affected by a short antenna at high frequencies (*f*>32kHz) (Santolík and Parrot, 2000; Parrot et al., 2001 table 1):
 - Amplitude: Up to a factor of 10
 - Phase: Up to 70°
- And at low frequencies ? Cluster case studies of EMIC waves (1Hz)
 - k estimation : we assume Z=1
 - We compare these results to : *k* filtering analysis results

Numerical calculations of wave stability (WHAMP)

Geospace revisited: a Cluster/MAARBLE/Van Allen Probes Conference, Rhodos, Greece, 15-20 September 2014

Wavenumber estimations

WHAMP K filtering n Magnetic energy density: 1 E_{SUM} (mV²/m²/Hz) B_{SUM} (nT²/Hz) 100 100 100 100 100 100 100 100 0. $(f_{sc} = 0.57Hz)$ (H²) 0.6 € 0.5 **B**² (j) 0.4 60 50 40 3.0 0. (2H 0.6 H 0.5 E² 0 0.4 kểρ 0.2 0.6 0.8 kz 30 20 10 0.8 80 Theta (deg) 05 05 05 0.7 θ -0.05 (Hz) 0.5 20 0 0.4 Ŷ 0.00 0.8 1000 -900 -800 -700 -0.7 (H^z) 0.6 0.5 n z -0.05 600 -500 -0.4 ky kx -0.<u>4</u>10 1934:20 1934:40 1935:00 1935:20 k.ρ 0.2 0.6 0.8 for n =775 $k \approx 1.2 \ 10^{-2} \ rad/km$ γ>0 *k*= 9.4 10⁻³ rad/km Or for k.p in k.p ≈ 0.33 (+/- 3.5 10⁻³ rad/km) [0.28, 0.35](p≈27km) taking $\omega = 2\pi * 0.58$ rad/s.

Wavenumber estimations

- k.p ≈ [0.29 ; 0.33] (k filtering)
- k.p ≈ [0.18 ; 0.36] (refractive index)
- k.ρ ≈ [0.28 ; 0.35] (stability analysis)
- All these methods provide similar results.
 The assumption Z ≈ 1 holds
- The refractive index analysis provides the lowest values: it suggests that Z is slightly larger than 1

(Grison et al., JGR, accepted)

In the plasmapause region: March 30th, 2002

- Cluster spacecraft crossed the nightside plasmapause in the magnetic equatorial region
- Well studied event (*Pickett et al.,* 2010; *Omura et al.,* 2010; *Shoji et al.,* 2001; *Grison et al.,* 2013; *Pakhotin et al.,* 2013)
- Z is sensitive to the plasma environment. Does the dense and cold plasma at the plasmapause affect Z?

Observed dispersion relation of EMIC triggered emissions

- EMIC triggered emissions: Coherent emissions that display increasing frequency with time (rising tone)
- We select the widest rising tone among the large ones.

Geospace revisited: a Cluster/MAARBLE/Van Allen Probes Conference, Rhodos, Greece, 15-20 September 2014

Analysis of a rising tone

Experimental and Numerical Dispersion Relations

- **Experimental k values are slightly lower** than the numerical ones.

Geospace revisited: a Cluster/MAARBLE/Van Allen Probes Conference, Rhodos, Greece, 15-20 September 2014

Influence of the plasma composition

Experimental and Numerical Dispersion Relations

We define the fraction in the following way: n_{H_+}/n_{O_+} and $n_{H_+}/n_{H_{e+}}$

In the present case, observed fractions are estimated via the low frequency cut-off of the EMIC waves (*Pickett et al.*, 2010).

A Higher density of O⁺ and He⁺ can explain the discrepancy between the observations and WHAMP results (fraction=4.7).

Influence of the core ion temperature

Experimental and Numerical Dispersion Relations

CLUSTER instruments miss a large part of the cold ion population (with a temperature lower than 27eV)

The dispersion relation is very sensitive to the temperature.

A single temperature model doesn't match the whole experimental dispersion.

Influence of the propagation angle

Experimental and Numerical Dispersion Relations

Up to theta = 30°, the (numerical) dispersion relation does not substantially change

Geospace revisited: a Cluster/MAARBLE/Van Allen Probes Conference, Rhodos, Greece, 15-20 September 2014

Influence of the impedance (Z≠1)

Z=1.2 shows the best match

Experimental and Numerical Dispersion Relations

Taking into consideration the observed propagation angles (*low (high) at low* (*high) frequencies*): Z=1.5 shows the best match

Summary and Conclusions

We estimated wavenumbers of EMIC waves via:

- single spacecraft analysis (refractive index) using δE and δB measurements The comparisons of the observation to the numerical dispersion relation show that the method works well in the plasmasphere region (Z \approx 1).

- From Cluster observations, we can consider (Z < 1.5). The impedance Z of the electric antenna
 plasma interface is low in the ULF range.
- This is similar to the values found in a low density region (*Grison et al.*, accepted)
- The main uncertainty is the core plasma temperature. Need to apply this method to other spacecraft missions.
- The observed propagation angles increase with frequency. A similar effect on the wavenumbers is found in the observations and in the numerical calculations
- This method offers a powerful way to obtain wavenumbers of coherent EMIC emissions.
- Wavenumbers measurements are important to study the wave particle interactions in the radiation belts.